Mutation Types and Aging Differently Affect Revertant Fiber Expansion in Dystrophic Mdx and Mdx52 Mice
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD), one of the most common and lethal genetic disorders, and the mdx mouse myopathies are caused by a lack of dystrophin protein. These dystrophic muscles contain sporadic clusters of dystrophin-expressing revertant fibers (RFs), as detected by immunohistochemistry. RFs are known to arise from muscle precursor cells with spontaneous exon skipping (alternative splicing) and clonally expand in size with increasing age through the process of muscle degeneration/regeneration. The expansion of revertant clusters is thought to represent the cumulative history of muscle regeneration and proliferation of such precursor cells. However, the precise mechanisms by which RFs arise and expand are poorly understood. Here, to test the effects of mutation types and aging on RF expansion and muscle regeneration, we examined the number of RFs in mdx mice (containing a nonsense mutation in exon 23) and mdx52 mice (containing deletion mutation of exon 52) with the same C57BL/6 background at 2, 6, 12, and 18months of age. Mdx mice displayed a significantly higher number of RFs compared to mdx52 mice in all age groups, suggesting that revertant fiber expansion largely depends on the type of mutation and/or location in the gene. A significant increase in the expression and clustering levels of RFs was found beginning at 6months of age in mdx mice compared with mdx52 mice. In contrast to the significant expansion of RFs with increasing age, the number of centrally nucleated fibers and embryonic myosin heavy chain-positive fibers (indicative of cumulative and current muscle regeneration, respectively) decreased with age in both mouse strains. These results suggest that mutation types and aging differently affect revertant fiber expansion in mdx and mdx52 mice.
منابع مشابه
Massive Idiosyncratic Exon Skipping Corrects the Nonsense Mutation in Dystrophic Mouse Muscle and Produces Functional Revertant Fibers by Clonal Expansion
Conventionally, nonsense mutations within a gene preclude synthesis of a full-length functional protein. Obviation of such a blockage is seen in the mdx mouse, where despite a nonsense mutation in exon 23 of the dystrophin gene, occasional so-called revertant muscle fibers are seen to contain near-normal levels of its protein product. Here, we show that reversion of dystrophin expression in mdx...
متن کاملCurrent Translational Research and Murine Models For Duchenne Muscular Dystrophy
Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder characterized by progressive muscle degeneration. Mutations in the DMD gene result in the absence of dystrophin, a protein required for muscle strength and stability. Currently, there is no cure for DMD. Since murine models are relatively easy to genetically manipulate, cost effective, and easily reproducible due to their short g...
متن کاملExpansion of revertant fibers in dystrophic mdx muscles reflects activity of muscle precursor cells and serves as an index of muscle regeneration.
Duchenne muscular dystrophy and the mdx mouse myopathies reflect a lack of dystrophin in muscles. However, both contain sporadic clusters of revertant fibers (RFs) that express dystrophin. RF clusters expand in size with age in mdx mice. To test the hypothesis that the expansion of clusters is achieved through the process of muscle degeneration and regeneration, we analyzed muscles of mdx mice ...
متن کاملRevertant Fibers in the mdx Murine Model of Duchenne Muscular Dystrophy: An Age- and Muscle-Related Reappraisal
Muscles in Duchenne dystrophy patients are characterized by the absence of dystrophin, yet transverse sections show a small percentage of fibers (termed "revertant fibers") positive for dystrophin expression. This phenomenon, whose biological bases have not been fully elucidated, is present also in the murine and canine models of DMD and can confound the evaluation of therapeutic approaches. We...
متن کاملof the 2013 Spring Padua Muscle Days
5 Three ways to try and heal a diseased muscle: macrophages, exon skipping and cell transplantation Eva Galletta (1), Chiara Saletti (1), Sarah Pigozzo (1), Federico Galvagni (2), Chiara Bolego (3), Libero Vitiello (1) (1) Department of Biology, University of Padova, Italy; (2) Department of Biotechnology, University of Siena, Italy; (3) Department of Pharmacy, University of Padova, Italy. E-ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013